MCP¶
MCP provides external context providers for model requests.
Source Code¶
import asyncio
from pathlib import Path
from agently import Agently
Agently.set_settings(
"OpenAICompatible",
{
"base_url": "http://127.0.0.1:11434/v1",
"model": "qwen2.5:7b",
"model_type": "chat",
},
)
agent = Agently.create_agent()
## MCP: use a local MCP server (stdio)
async def mcp_stdio_demo():
mcp_path = Path(__file__).parents[1] / "mcp" / "cal_mcp_server.py"
result = await agent.use_mcp(str(mcp_path)).input("333+546=?").async_start()
print(result)
asyncio.run(mcp_stdio_demo())
Walkthrough¶
- Useful for file/resource context and shared retrieval.
- Keep MCP calls separate from core prompt logic.
What you'll learn¶
- Understand MCP context providers
Exercises¶
- Run MCP example and inspect output